人臉識(shí)別解析:人臉識(shí)別技術(shù)的發(fā)展趨勢
1、人臉識(shí)別的理解:人臉識(shí)別(FaceRecognition)是一種依據(jù)人的面部特征(如統(tǒng)計(jì)或幾何特征等),自動(dòng)進(jìn)行身份識(shí)別的一種生物識(shí)別技術(shù),又稱為面像識(shí)別、人像識(shí)別、相貌識(shí)別、面孔識(shí)別、面部識(shí)別等。通常我們所說的人臉識(shí)別是基于光學(xué)人臉圖像的身份識(shí)別與驗(yàn)證的簡稱。人臉識(shí)別利用攝像機(jī)或攝像頭采集含有人臉的圖像或視頻流,并自動(dòng)在圖像中檢測和跟蹤人臉,進(jìn)而對檢測到的人臉圖像進(jìn)行一系列的相關(guān)應(yīng)用操作。技術(shù)上包括圖像采集、特征定位、身份的確認(rèn)和查找等等。簡單來說,就是從照片中提取人臉中的特征,比如眉毛高度、嘴角等等,再通過特征的對比輸出結(jié)果。2、人臉識(shí)別的發(fā)展簡史:第一階段(1950s—1980s)初級階段:人臉識(shí)別被當(dāng)作一個(gè)一般性的模式識(shí)別問題,主流技術(shù)基于人臉的幾何結(jié)構(gòu)特征。這集中體現(xiàn)在人們對于剪影(Profile)的研究上,人們對面部剪影曲線的結(jié)構(gòu)特征提取與分析方面進(jìn)行了大量研究。人工神經(jīng)網(wǎng)絡(luò)也一度曾經(jīng)被研究人員用于人臉識(shí)別問題中。較早從事AFR研究的研究人員除了布萊索(Bledsoe)外還有戈登斯泰因(Goldstein)、哈蒙(Harmon)以及金出武雄(KanadeTakeo)等。總體而言,這一階段是人臉識(shí)別研究的初級階段,非常重要的成果不是很多,也基本沒有獲得實(shí)際應(yīng)用。第二階段(1990s)高潮階段:這一階段盡管時(shí)間相對短暫,但人臉識(shí)別卻發(fā)展迅速,不但出現(xiàn)了很多經(jīng)典的方法,例如EigenFace,FisherFace和彈性圖匹配;并出現(xiàn)了若干商業(yè)化運(yùn)作的人臉識(shí)別系統(tǒng),比如最為著名的Visionics(現(xiàn)為Identix)的FaceIt系統(tǒng)。從技術(shù)方案上看,2D人臉圖像線性子空間判別分析、統(tǒng)計(jì)表觀模型、統(tǒng)計(jì)模式識(shí)別方法是這一階段內(nèi)的主流技術(shù)。第三階段(1990s末~現(xiàn)在)人臉識(shí)別的研究不斷深入,研究者開始關(guān)注面向真實(shí)條件的人臉識(shí)別問題,主要包括以下四個(gè)方面的研究:1)提出不同的人臉空間模型,包括以線性判別分析為代表的線性建模方法,以Kernel方法為代表的非線性建模方法和基于3D信息的3D人臉識(shí)別方法。2)深入分析和研究影響人臉識(shí)別的因素,包括光照不變?nèi)四樧R(shí)別、姿態(tài)不變?nèi)四樧R(shí)別和表情不變?nèi)四樧R(shí)別等。3)利用新的特征表示,包括局部描述子(GaborFace,LBPFace等)和深度學(xué)習(xí)方法。4)利用新的數(shù)據(jù)源,例如基于視頻的人臉識(shí)別和基于素描、近紅外圖像的人臉識(shí)別。二、市場研究1、全球人臉識(shí)別市場前瞻根據(jù)人臉識(shí)別行業(yè)發(fā)展現(xiàn)狀;到2016年,全球生物識(shí)別市場規(guī)模在127.13億美元左右,其中人臉識(shí)別規(guī)模約26.53億美元,占比在20%左右。預(yù)計(jì)到2021年,全球人臉識(shí)別市場預(yù)計(jì)將達(dá)到63.7億美元,按預(yù)計(jì)期間的復(fù)合增長率達(dá)17.83%
2、中國人臉識(shí)別市場前瞻根據(jù)人臉識(shí)別行業(yè)發(fā)展現(xiàn)狀,估算我國人臉識(shí)別市場規(guī)模約占全球市場的10%左右。2010-2016年,我國人臉識(shí)別市場規(guī)模逐年增長,年均復(fù)合增長率達(dá)27%。2016年,我國人臉識(shí)別行業(yè)市場規(guī)模約為17.25億元,同比增長27.97%,增速較上年上升4.64個(gè)百分點(diǎn)。
作者:放飛人夜