人臉識別是什么?人臉識別特指利用分析比較人臉視覺特征信息進行身份鑒別的計算機技術。人臉識別是一項熱門的計算機技術研究領域,它屬于生物特征識別技術,是對生物體(一般特指人)本身的生物特征來區分生物體個體。
攝像頭模組|人臉識別攝像頭模組|寬動態攝像頭模組
廣義的人臉識別實際包括構建人臉識別系統的一系列相關技術,包括人臉圖像采集、人臉定位、人臉識別預處理、身份確認以及身份查找等;而狹義的人臉識別特指通過人臉進行身份確認或者身份查找的技術或系統。
生物特征識別技術所研究的生物特征包括人臉、指紋、手掌紋、掌型、虹膜、視網膜、靜脈、聲音(語音)、體形、紅外溫譜、耳型、氣味、個人習慣(例如敲擊鍵盤的力度和頻率、簽字、步態)等,相應的識別技術就有人臉識別、指紋識別、掌紋識別、虹膜識別、視網膜識別、靜脈識別、語音識別(用語音識別可以進行身份識別,也可以進行語音內容的識別,只有前者屬于生物特征識別技術)、體形識別、鍵盤敲擊識別、簽字識別等。
幾何特征的人臉識別方法
攝像頭模組|人臉識別攝像頭模組|寬動態攝像頭模組
幾何特征可以是眼、鼻、嘴等的形狀和它們之間的幾何關系(如相互之間的距離)。這些算法識別速度快,需要的內存小,但識別率較低。
基于特征臉(PCA)的人臉識別方法
特征臉方法是基于KL變換的人臉識別方法,KL變換是圖像壓縮的一種最優正交變換。高維的圖像空間經過KL變換后得到一組新的正交基,保留其中重要的正交基,由這些基可以轉成低維線性空間。如果假設人臉在這些低維線性空間的投影具有可分性,就可以將這些投影用作識別的特征矢量,這就是特征臉方法的基本思想。這些方法需要較多的訓練樣本,而且完全是基于圖像灰度的統計特性的。目前有一些改進型的特征臉方法。
神經網絡的人臉識別方法
神經網絡的輸入可以是降低分辨率的人臉圖像、局部區域的自相關函數、局部紋理的二階矩等。這類方法同樣需要較多的樣本進行訓練,而在許多應用中,樣本數量是很有限的。
彈性圖匹配的人臉識別方法
彈性圖匹配法在二維的空間中定義了一種對于通常的人臉變形具有一定的不變性的距離,并采用屬性拓撲圖來代表人臉,拓撲圖的任一頂點均包含一特征向量,用來記錄人臉在該頂點位置附近的信息。該方法結合了灰度特性和幾何因素,在比對時可以允許圖像存在彈性形變,在克服表情變化對識別的影響方面收到了較好的效果,同時對于單個人也不再需要多個樣本進行訓練。
線段Hausdorff距離(LHD)的人臉識別方法
心理學的研究表明,人類在識別輪廓圖(比如漫畫)的速度和準確度上絲毫不比識別灰度圖差。LHD是基于從人臉灰度圖像中提取出來的線段圖的,它定義的是兩個線段集之間的距離,與眾不同的是,LHD并不建立不同線段集之間線段的一一對應關系,因此它更能適應線段圖之間的微小變化。實驗結果表明,LHD在不同光照條件下和不同姿態情況下都有非常出色的表現,但是它在大表情的情況下識別效果不好。
支持向量機(SVM)的人臉識別方法
近年來,支持向量機是統計模式識別領域的一個新的熱點,它試圖使得學習機在經驗風險和泛化能力上達到一種妥協,從而提高學習機的性能。支持向量機主要解決的是一個2分類問題,它的基本思想是試圖把一個低維的線性不可分的問題轉化成一個高維的線性可分的問題。通常的實驗結果表明SVM有較好的識別率,但是它需要大量的訓練樣本(每類300個),這在實際應用中往往是不現實的。而且支持向量機訓練時間長,方法實現復雜,核函數的取法沒有統一的理論。
人臉識別新技術
傳統的人臉識別技術主要是基于可見光圖像的人臉識別,這也是人們最熟悉的識別方式,已有30多年的研發歷史。但這種方式有著難以克服的缺陷,尤其在環境光照發生變化時,識別效果會急劇下降,無法滿足實際系統的需要。解決光照問題的方案有三維圖像人臉識別,和熱成像人臉識別。但目前這兩種技術還遠不成熟,識別效果不盡人意。
最近迅速發展起來的一種解決方案是基于主動近紅外圖像的多光源人臉識別技術。它可以克服光線變化的影響,已經取得了卓越的識別性能,在精度、穩定性和速度方面的整體系統性能超過三維圖像人臉識別。這項技術在近兩三年發展迅速,使人臉識別技術逐漸走向實用化。人臉識別攝像頭模組
人臉識別攝像頭模組人臉識別特指利用分析比較人臉視覺特征信息進行身份鑒別的計算機技術。人臉識別是一項熱門的計算機技術研究領域,它屬于生物特征識別技術,是對生物體(一般特指人)本身的生物特征來區分生物體個體。
人臉識別是什么?
廣義的人臉識別實際包括構建人臉識別系統的一系列相關技術,包括人臉圖像采集、人臉定位、人臉識別預處理、身份確認以及身份查找等;而狹義的人臉識別特指通過人臉進行身份確認或者身份查找的技術或系統。生物特征識別技術所研究的生物特征包括人臉、指紋、手掌紋、掌型、虹膜、視網膜、靜脈、聲音(語音)、體形、紅外溫譜、耳型、氣味、個人習慣(例如敲擊鍵盤的力度和頻率、簽字、步態)等,相應的識別技術就有人臉識別、指紋識別、掌紋識別、虹膜識別、視網膜識別、靜脈識別、語音識別(用語音識別可以進行身份識別,也可以進行語音內容的識別,只有前者屬于生物特征識別技術)、體形識別、鍵盤敲擊識別、簽字識別等。幾何特征的人臉識別方法幾何特征可以是眼、鼻、嘴等的形狀和它們之間的幾何關系(如相互之間的距離)。這些算法識別速度快,需要的內存小,但識別率較低。
基于特征臉(PCA)的人臉識別方法
特征臉方法是基于KL變換的人臉識別方法,KL變換是圖像壓縮的一種最優正交變換。高維的圖像空間經過KL變換后得到一組新的正交基,保留其中重要的正交基,由這些基可以轉成低維線性空間。如果假設人臉在這些低維線性空間的投影具有可分性,就可以將這些投影用作識別的特征矢量,這就是特征臉方法的基本思想。這些方法需要較多的訓練樣本,而且完全是基于圖像灰度的統計特性的。目前有一些改進型的特征臉方法。
人臉識別攝像頭模組
神經網絡的人臉識別方法
神經網絡的輸入可以是降低分辨率的人臉圖像、局部區域的自相關函數、局部紋理的二階矩等。這類方法同樣需要較多的樣本進行訓練,而在許多應用中,樣本數量是很有限的。
攝像頭模組|人臉識別攝像頭模組|寬動態攝像頭模組
彈性圖匹配的人臉識別方法
彈性圖匹配法在二維的空間中定義了一種對于通常的人臉變形具有一定的不變性的距離,并采用屬性拓撲圖來代表人臉,拓撲圖的任一頂點均包含一特征向量,用來記錄人臉在該頂點位置附近的信息。該方法結合了灰度特性和幾何因素,在比對時可以允許圖像存在彈性形變,在克服表情變化對識別的影響方面收到了較好的效果,同時對于單個人也不再需要多個樣本進行訓練。
線段Hausdorff距離(LHD)的人臉識別方法
心理學的研究表明,人類在識別輪廓圖(比如漫畫)的速度和準確度上絲毫不比識別灰度圖差。LHD是基于從人臉灰度圖像中提取出來的線段圖的,它定義的是兩個線段集之間的距離,與眾不同的是,LHD并不建立不同線段集之間線段的一一對應關系,因此它更能適應線段圖之間的微小變化。實驗結果表明,LHD在不同光照條件下和不同姿態情況下都有非常出色的表現,但是它在大表情的情況下識別效果不好。
人臉識別攝像頭模組
支持向量機(SVM)的人臉識別方法近年來,支持向量機是統計模式識別領域的一個新的熱點,它試圖使得學習機在經驗風險和泛化能力上達到一種妥協,從而提高學習機的性能。支持向量機主要解決的是一個2分類問題,它的基本思想是試圖把一個低維的線性不可分的問題轉化成一個高維的線性可分的問題。通常的實驗結果表明SVM有較好的識別率,但是它需要大量的訓練樣本(每類300個),這在實際應用中往往是不現實的。而且支持向量機訓練時間長,方法實現復雜,核函數的取法沒有統一的理論。
人臉識別新技術
傳統的人臉識別技術主要是基于可見光圖像的人臉識別,這也是人們最熟悉的識別方式,已有30多年的研發歷史。但這種方式有著難以克服的缺陷,尤其在環境光照發生變化時,識別效果會急劇下降,無法滿足實際系統的需要。解決光照問題的方案有三維圖像人臉識別,和熱成像人臉識別。但目前這兩種技術還遠不成熟,識別效果不盡人意。最近迅速發展起來的一種解決方案是基于主動近紅外圖像的多光源人臉識別技術。它可以克服光線變化的影響,已經取得了卓越的識別性能,在精度、穩定性和速度方面的整體系統性能超過三維圖像人臉識別。這項技術在近兩三年發展迅速,使人臉識別技術逐漸走向實用化。人臉識別是什么
數碼相機人臉自動對焦和笑臉快門技術首先是面部捕捉。它根據人的頭部的部位進行判定,首先確定頭部,然后判斷眼睛和嘴巴等頭部特征,通過特征庫的比對,確認是人面部,完成面部捕捉。然后以人臉為焦點進行自動對焦,可以大大的提升拍出照片的清晰度。笑臉快門技術就是在人臉識別的基礎上,完成了面部捕捉,然后開始判斷嘴的上彎程度和眼的下彎程度,來判斷是不是笑了。以上所有的捕捉和比較都是在對比特征庫的情況下完成的,所以特征庫是基礎,里面有各種典型的面部和笑臉特征數據。
應用示例人臉識別攝像頭模組
2012年4月13日京滬高鐵安檢區域人臉識別系統工程開始招標,上海虹橋站、天津西站和濟南西站三個車站安檢區域將安裝用于身份識別的高科技安檢系統——人臉識別系統,以協助公安部門抓捕在逃案犯,人臉識別產品及系統解決方案的高科技創新型企業。由該領域內的專家組成了核心技術研發團隊,專注于以人臉識別技術為核心,覆蓋考勤、門禁安防等多領域的產品設計與研發項目。現今人臉識別產品已廣泛應用于金融、司法、軍隊、公安、邊檢、政府、航天、電力、工廠、教育、醫療及眾多企事業單位等領域。
2013年9月5日,刷臉支付系統在中國國際金融展上亮相。刷臉支付系統基于天誠盛業自主研發的生物識別云金融平臺,將自主知識產權軍用級別的人臉識別算法與現有的支付系統進行融合,對接了我們生活中涉及到支付、轉賬、結算和交易的環節。在支付時人們不再需要銀行卡、存折和密碼,甚至是手機,只需要對著攝像頭點個頭、露個笑臉,刷臉支付系統將會在幾秒內完成身份確認、賬戶讀取、轉賬支付、交易確認等一站式支付環節,為用戶創建更棒的支付體驗。
2014年8月起,日本將在部分機場的出入國審查(邊檢)處重啟人臉識別系統的實驗。2012年實施的首次實驗因錯誤頻發而一度中止,但法務省認為,為迎接2020年東京奧運會需提高邊檢速度,于是決定重啟實驗。實驗將在2014年8月起進行約5周,對象為在羽田機場和成田機場乘機的日本人。負責實驗的企業將于近期敲定。日本政府在各地機場設置了僅憑指紋識別便可通過的自動邊檢門,但因需要事先登記指紋,乘客利用率不高。人臉識別則無需事先登記。[4]
2015年3月15日漢諾威IT博覽會(CeBIT)在德國開幕,阿里巴巴創始人馬云作為唯一受邀的企業家代表,在開幕式上作了主旨演講。在發表演講后,馬云還為德國總理默克爾與中國副總理馬凱演示了螞蟻金服的SmiletoPay掃臉技術,并當場刷自己的臉給嘉賓買禮物。馬云選擇的禮物是淘寶網上
一枚1948年的漢諾威紀念郵票。他用手機登陸淘寶,首先選擇產品;第二步進入支付系統,確認支付后出現掃臉的頁面;然后掃臉(拍照后)后臺認證;接著顯示支付成功。馬云現場為德國總理默克爾贈送了一份特殊禮物:一張紀念版的德國日歷頁,且恰好就是這位女總理的出生年月。